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ABSTRACT
A complex binary trait is a character that has a dichotomous expression but with a polygenic genetic

background. Mapping quantitative trait loci (QTL) for such traits is difficult because of the discrete nature
and the reduced variation in the phenotypic distribution. Bayesian statistics are proved to be a powerful
tool for solving complicated genetic problems, such as multiple QTL with nonadditive effects, and have
been successfully applied to QTL mapping for continuous traits. In this study, we show that Bayesian
statistics are particularly useful for mapping QTL for complex binary traits. We model the binary trait
under the classical threshold model of quantitative genetics. The Bayesian mapping statistics are developed
on the basis of the idea of data augmentation. This treatment allows an easy way to generate the value of
a hypothetical underlying variable (called the liability) and a threshold, which in turn allow the use of
existing Bayesian statistics. The reversible jump Markov chain Monte Carlo algorithm is used to simulate
the posterior samples of all unknowns, including the number of QTL, the locations and effects of identified
QTL, genotypes of each individual at both the QTL and markers, and eventually the liability of each
individual. The Bayesian mapping ends with an estimation of the joint posterior distribution of the number
of QTL and the locations and effects of the identified QTL. Utilities of the method are demonstrated
using a simulated outbred full-sib family. A computer program written in FORTRAN language is freely
available on request.

THE overwhelming amount of molecular data pro- technique, e.g., a permutation test (Churchill and
vides a large opportunity to locate genes controlling Doerge 1994) or bootstrapping (Visscher et al. 1996b).

the expression of quantitative traits. Currently, a variety Bayesian methods of QTL mapping have been devel-
of statistical methods are available for mapping quantita- oped, in particular, for detection of multiple QTL
tive trait loci (QTL). Early methods of QTL mapping (Satagopan and Yandell 1996; Satagopan et al. 1996;
were developed on the basis of the maximum-likelihood Heath 1997; Uimari and Hoeschele 1997; Stephens
or least-squares method under a single QTL model (e.g., and Fisch 1998; Sillanpää and Arjas 1998, 1999). In
Lander and Botstein 1989; Haley and Knott 1992). the Bayesian analysis, rather than maximizing a likeli-
Yet it is now known that when multiple QTL are present hood function, inferences are based on the joint poste-
in the same linkage group, the single QTL model can rior distribution of all unknown variables given the prior
lead to biased estimates of QTL positions and effects distribution of all unknowns and the observed data. The
(e.g., Haley and Knott 1992). In theory, effects of introduction of iterative simulation methods, such as
multiple QTL can be simultaneously included in the the data augmentation and the more general Markov
model, but this is difficult to implement in practice chain Monte Carlo (MCMC) algorithm (Tanner and
because even the number of QTL is an unknown param- Wong 1987; Gelfand and Smith 1990), which provide
eter. Jansen (1993) and Zeng (1994) developed the a Monte Carlo approximation to the required multiple
idea of composite interval mapping in which mapping integration, has brought the Bayesian method into the
in a particular interval is combined with multiple regres- mainstream of QTL mapping. For complicated pedigree
sion on markers in other chromosomal regions to ab- data, as commonly seen in animal breeding, Bayesian
sorb effects of other QTL. Recently, Kao et al. (1999) QTL mapping was demonstrated by Hoeschele and
developed a multiple interval mapping (MIM) approach VanRanden (1993a,b), implemented via MCMC by
particularly designed for mapping multiple QTL. All Thaller and Hoeschele (1996) for single markers, by
these approaches provide only point estimates for num- Uimari et al. (1996) for multiple linked markers, and
ber, locations, and effects of QTL. The critical values by Uimari and Hoeschele (1997) for multiple linked
for significance tests and interval estimates of the param- QTL. In plants, Bayesian mapping has been seen in
eters have to be established using a repeated sampling Satagopan et al. (1996), where a prespecified number

of QTL were assumed first, and then a Bayes factor
approach was used to decide the most probable number
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as an unknown variable and generate its posterior distri- full-sib family represents the simplest form of an outbred
bution (Satagopan and Yandell 1996; Heath 1997; or open-pollinated population, and the method can be
Stephens and Fisch 1998; Sillanpää and Arjas 1998, easily extended to natural populations. The threshold
1999). This full Bayesian treatment has further revolu- model assumes that there is a fixed threshold in the scale
tionized QTL mapping and opened a new horizon in of liability, t, which determines the binary phenotype of
quantitative genetics. an individual by comparing yi with t. If yi . t, we assign

Almost all the Bayesian mapping methods mentioned si 5 1, and otherwise si 5 0. The liability yi is treated as
above are designed for normally distributed traits. Many a usual quantitative character and is thus described by
traits of biological interest and/or economical impor- the linear model,
tance, however, show a dichotomous or binary pheno-
type, but are not inherited in a simple Mendelian man- yi 5 XT

i b 1 o
l

j51

ZT
ijHgj 1 εi, (1)

ner. The genetic architectures of these characters are
generally complex, involving multiple interacting ge- where b is a p 3 1 vector of covariate effects (including
netic factors. Furthermore, the expression of the pheno- the overall mean), which relate yi via a known incidence
type is often sensitive to environmental factors. As a vector Xi; εi is the residual effect (including the environ-
consequence, these traits are usually explained by the mental error) distributed as N(0, s2

ε); l is the number
concept of the threshold model (Falconer and of QTL affecting the liability on all chromosomes; gj 5
Mackay 1996; Lynch and Walsh 1998), which assumes (am

j , af
j, dj)T is a vector of genetic effects of the jth QTL

a latent continuous variable (called the liability) under- with am
j and af

j being the maternally and paternally in-
lying a binary trait. The binary phenotype and the con- herited allelic effects, respectively, and dj the dominance
tinuous liability are linked through a fixed threshold. effect; Zij 5 (zij 1, zij 2, zij 3, zij 4)T are indicators for the four
One can treat the liability as an unobservable quantita- possible ordered genotypes and defined as zijk 5 1 if the
tive trait. Genes controlling complex binary traits can kth genotype is observed and zijk 5 0 otherwise; and H 5
be treated as quantitative trait loci and handled using (Hm Hf Hd), where Hm 5 (1 1 21 21)T, Hf 5 (1 21
the QTL mapping approach. 1 21)T, and Hd 5 (1 21 21 1)T represent the linear

QTL mapping for the liability of a binary trait is more contrasts converting the three genetic effects into the
complicated than for a regular quantitative trait. Al- genotypic values of the four genotypes. The threshold
though considerable progress has been made over the model is overparameterized so that some constraints
past few years, the development of new statistical meth- must be superimposed. As usual, we take s2

ε 5 1 and
odology for binary traits still poses a great challenge. In t 5 0 (Albert and Chib 1993; Sorenson et al. 1995).
human linkage studies, a nonparametric approach has Note that the four genotypes in the progeny are ordered
been proposed (Kruglyak and Lander 1995). Under as {A1A3, A1A4, A2A3, A2A4} given the genotypes of the
the threshold model, parametric methods of QTL map- parents being A1A2 and A3A4.
ping based on a generalized linear model (GLM) have The observables are the binary phenotypic values S 5
been developed in line crosses (Hackett and Weller {si}n

i51, the covariates, and the marker data. The locations
1995; Xu and Atchley 1996; Visscher et al. 1996a; of markers on chromosomes are known a priori. Marker
Rebai 1997; Rao and Xu 1998; Xu et al. 1998). Yi and linkage phases in the parents are assumed known once
Xu (1999a,b) recently developed a random model ap- they are inferred from marker data of the progeny.
proach to QTL mapping for complex binary traits. Be- When the family size is small, inference of marker link-
cause of the additional complexity added between the age phases can be subject to error and the linkage phases
phenotype and the liability, these methods were devel- should be sampled along with other unknowns (Sillan-
oped on the basis of either a single QTL model or with pää and Arjas 1999). The observed marker genotypes
some approximation. A Bayesian mapping method has in some individuals may not be fully informative and
not been available for binary traits and such a method the patterns of allelic inheritance of such markers are
is ideal for handling problems with this level of complex- also unknown. The list of unobservables includes the
ity. Therefore, the purpose of this study is to explore the liability Y 5 {yi}n

i51, the number of QTL and their loca-
application of Bayesian mapping to binary and multiple-

tions l 5 {lj}l
j51, the complete marker genotypes M 5

ordered categorical traits.
{Mik}, the QTL genotypes Z 5 {Zij}, and the model effects
u 5 (bT, gT

1, · · · , gT
l )T, where lj denotes the distance

of the jth QTL from one end of the corresponding
STATISTICAL METHODS chromosome, Mik and Zij denote the kth marker geno-

type and the jth QTL genotype, respectively, for the ithThe threshold model and liability: Let si and yi (i 5
individual.1, · · · , n) be the binary phenotype and the underlying

From Bayes’ theorem, the joint posterior density ofliability, respectively, of the ith individual in a full-sib
the unobservables, {Y, l, l, u, M, Z}, given the binaryfamily of interest. We are interested in developing a

QTL mapping algorithm in a full-sib family because a data S, is
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p(Y, l, l, M, Z, u|S) ~ p(S|Y, l, l, Z, u)p(Y|l, l, Z, u) abilities of the complete marker genotype at each
marker locus for each individual. These prior probabili-

3 p(Z|l, l, M)p(M)p(l, l, u). (2)
ties are calculated using the simplified multipoint
method of Rao and Xu (1998) in which genotypes ofHere, we have suppressed the notation for conditional
all markers, including the marker in question, are usedon the observed marker data. The first term in (2) is

the conditional distribution of the data given all the to infer the prior probabilities of the allelic inherence
unknowns. It is given by Albert and Chib (1993) and of the current marker. This treatment guarantees that
Sorensen et al. (1995) and has the form of a marker genotype sampled is compatible with observed

data. When a marker is already fully informative, each
p(S|Y, l, l, Z, u) 5 p

n

i51

p(si|yi) 5 p
n

i51

{1(yi . 0)1(si 5 1) genotype is uniquely identified, and the multipoint
prior will automatically force the marker locus not to

1 1(yi , 0)1(si 5 0)}, (3) be updated. When the marker information content is
low, using the multipoint prior can increase the effi-where 1(X e A) is the indicator function, taking the
ciency of MCMC compared with the two-point priorvalue of 1 if X is contained in A, and 0 otherwise. Note
(using flanking markers only).that p(S|Y, l, l, Z, u) 5 p(S|Y) because S is solely deter-

Conditional posterior distributions: To implementmined by Y. The second term in (2) is the conditional
the MCMC algorithm, conditional posterior distribu-distribution of the liability given all other unknowns.
tions of the unknowns are needed. From the joint poste-Because liabilities of individuals are normally distrib-
rior density given in (2), the conditional posterior den-uted and independent of each other given other un-
sity of each unknown can be derived by treating otherknowns, we have
elements in the list of unknowns as constants and select-
ing the terms involving the item of interest. When thisp(Y|l, l, Z, u) 5 p

n

i51

p(yi|l, l, Z, u)
leads to the kernel of a standard density, e.g., normal
distribution, Gibbs sampling is applied to draw samples

5 p
n

i51

1

√2p
exp521

2
(yi 2 XT

i b 2 o
l

j51

ZT
ijHgi)26. for that distribution. Otherwise, sampling needs to be

done by using other techniques, e.g., the Metropolis-(4)
Hastings algorithm.

The next term in (2) is p(Z|l, l, M), which is the QTL To facilitate the development of the Gibbs sampler,
genotype distribution conditional on the number and the unobserved liability is included as an unknown nui-
locations of QTL and the complete marker genotypes. sance parameter in the model. This approach, known
p(M) is the complete marker genotype distribution con- as data augmentation, has been used in Bayesian analysis
ditional on observed marker information (recall that under the polygenic model of threshold traits (Soren-
markers can be partially informative). p(Z|l, l, M) and sen et al. 1995), but not in the context of QTL mapping.
p(M) are derived later. Finally, the last term in (2), p(l, The conditional posterior distribution of the underlying
l, u), is the joint prior distribution of l, l, and u, the variable yi given the binary phenotype is a truncated
parameters of interest. normal. The probability density of this truncated nor-

Prior distributions: Assuming prior independence of mal distribution is given in appendix a. The algorithm
the locations and effects of QTL, the joint prior density for simulating a truncated normal variable is given by
p(l, l, u) can be factored into the following product: Devroye (1986).

Given the liability Y, the number l, and genotype Zp(l, l, u) 5 p(l)p(l|l )p(u|l )
of QTL, the posterior distributions for the elements of
u can be derived using the standard linear model theory5 p(l)p(b)p

l

j51

[p(lj)p(am
j )p(af

j )p(dj)]. (5)
under a normal distribution. If normal priors are chosen
for the regression coefficients u, these posterior distribu-As in Sillanpää and Arjas (1998, 1999), the prior distri-
tions are also normal with a mean and variance as givenbution of l (the number of QTL) is assumed to be
in appendix a. Therefore, the augmentation approachtruncated Poisson with mean m and the maximum num-
allows the use of existing MCMC algorithms for nor-ber L. When no information regarding the locations
mally distributed variables. Conditional on all other pa-is available, the prior probability that a QTL is on a
rameters, marker and QTL genotypes of each individualchromosome is proportional to the length of the chro-
are independent and therefore can be updated locus bymosome. Within a chromosome, each QTL has a uni-
locus and individual by individual (Jansen et al. 1998).form distribution of residing at any location on that
Expressions of the conditional posterior probabilitieschromosome. We use diffuse normal priors for all re-
are derived using Bayes’ theorem, which is given ingression parameters, including the QTL effects and the
appendix a. Unfortunately, there are no explicit expres-fixed effects, e.g., the effect of sex and experimental
sions for the conditional posterior distributions of thesites.

In updating marker genotypes, we use the prior prob- number l and locations l of QTL. Updating of l and l
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must be achieved using the Metropolis-Hastings algo- l 5 0, and otherwise we choose pm 5 pa 5 pd 5 1⁄3, for
0 , l , L.rithm.

MCMC algorithm: A Markov chain Monte Carlo As in Sillanpää and Arjas (1998, 1999), we do not
fix the order of QTL when updating the QTL locations.method is used to generate the joint posterior distribu-

tion of all unknowns given in Equation 2. The idea of Elements of l are modified one at a time using the
Metropolis-Hastings algorithm. For the jth QTL, a pro-MCMC is to simulate a random walk in the space of all

unknowns that converges to a stationary distribution posal lnew
j is sampled from a uniform distribution in the

neighborhood of the previous value lj. The probability(Gelman et al. 1995). The stationary distribution repre-
sents the posterior distribution of the unknowns. Vari- that the proposal is accepted is given in appendix b. If

the proposal is not accepted, the state remains un-ous approaches have been suggested to conduct MCMC.
Two commonly used approaches are the Gibbs sampler changed, and the algorithm proceeds to update the

next QTL location.and the Metropolis-Hastings algorithms. The reversible
jump MCMC is an extension of the Metropolis-Hastings To add a QTL, we must sample a new location, new

genetic effects, and new QTL genotypes for each individ-sampler, permitting posterior samples to be collected
from posterior distributions with varying dimensions ual. First, we sample a chromosome with a probability

proportional to the length of the chromosome. Once(Green 1995; Richardson and Green 1997). The pro-
posed MCMC algorithm is carried out in an alternating a chromosome is chosen, a location of the new QTL ll11

is proposed from the uniform density on the sampledconditional sampling fashion. In other words, each iter-
ation of the sampling cycles through all elements of chromosome. We then sample QTL genotypes for the

newly added QTL for each individual from p(Znew
i |ll11,unknowns {Y, u, l, l, M, Z} represents the drawing of

each unknown conditional on the current values of all Zl
i, Zr

i), where Zl
i and Zr

i are the left and right flanking
genotype of the ith individual for the proposed QTL.other unknowns. The algorithm starts from an initial

point (Y0, u0, l 0, l0, M0, Z0) and proceeds to modify each The flanking genotypes can be the genotypes of markers
or QTL, whichever are closer to the new QTL position.of the unknowns in turn. To set initial values for M0

and Z0, we first calculate the probabilities of marker and Finally, new QTL effects are drawn from a normal den-
sity N(0, s2), where s2 is a prespecified constant. WeQTL genotypes using the simplified multipoint method

(Rao and Xu 1998) and then sample randomly a value then calculate the acceptance probability using equa-
tions given in appendix b and carry out a Metropolis-from the probability distribution as the initial points of

marker and QTL genotypes. Given the initial values of Hastings step. If the proposal is accepted, then we add
a QTL to the model at the new location and the geno-(u0, l 0, l0, M0, Z0), we generate Y0 from the correspond-

ing truncated normal distributions. The Gibbs sampler types and the effects are all accepted simultaneously.
Otherwise, the state remains unchanged.approach is adopted to update Y, u, M, and Z because

the conditional posterior distributions of Y, u, M, and To delete a QTL, an existing QTL is selected at ran-
dom and the relevant acceptance probability is calcu-Z have standard forms (appendix a). Updating l is

implemented using the Metropolis-Hastings algorithm. lated. The form of the acceptance probability is also
given in appendix b. If the proposal is accepted, weUpdating of the QTL number l requires a change in

the dimension of the model and thus needs a reversible delete a QTL from the model. Otherwise, the QTL
number remains unchanged.jump step. This has been accomplished by Sillanpää

and Arjas (1998, 1999) and is directly adopted in this
study. The MCMC process is briefly summarized as fol-

SIMULATION STUDIES
lows:

Designs of simulations: The Bayesian method was
Step 1: Update the liability Y individual by individual

evaluated empirically by analyzing simulated data. We
using (A1) and (A2);

simulated two chromosomes of length 100 cM and 70
Step 2: Update coefficients b and {gi }l

i51 using (A3)–
cM, respectively. Eleven and 8 codominant markers

(A5);
were respectively placed on the two chromosomes with

Step 3: Update the number l of QTL and their loca-
a marker distance of 10 cM. Four equally frequent alleles

tions l.
were simulated at each marker locus. Marker genotypes

Step 4: Update the QTL genotypes individual by indi-
were observed for parents and all the offspring. In each

vidual and locus by locus using (A6);
design, we simulated an outbred full-sib family with 300

Step 5: Update marker genotypes individual by individ-
individuals. Three QTL were simulated to control the

ual and locus by locus using (A7).
expression of a binary trait. There were exactly four
alleles at each QTL (each parent has two distinguishedIn step 3, we make a random choice among three

move types: (1) modify the QTL locations; (2) add one alleles and the two parents are not related). Therefore,
the QTL were fully informative. We used the size of thenew QTL to the model; and (3) delete one QTL from

the model, with probabilities pm, pa, and pd 5 1 2 pm 2 variance explained by each QTL to control the polymor-
phism of the QTL. If the variance is zero, the polymor-pa, respectively. Of course, pa 5 0 if l 5 L and pd 5 0 if
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TABLE 1

The true locations and genetic effects of the three simulated QTL

Paternal allelic Maternal allelic Dominance
Design Chromosome Location (cM) effect (am

j ) effect (af
j ) effect (dj ) Heritability

I 1 25 0.3162 0.3162 0.4472 0.20
1 75 0.2236 0.2236 0.3162 0.10
2 25 0.3162 0.3162 0.4472 0.20

II 1 25 0.1414 0.1414 0.2000 0.06
1 75 0.1360 0.1360 0.1923 0.05
2 25 0.1871 0.1871 0.2646 0.10

The effects are in the scale of liability for the binary data. The heritability is defined as proportion of the
variance of liability explained by the locus of interest.

phism of the QTL does not mean anything, although was implemented using an EM algorithm derived by S.
Xu (unpublished results).the four alleles are distinguished. On the other hand,

if the variance is very large, but all four alleles are identi- For all MCMC analyses, the same initial values and
priors were used. The initial value for the QTL numbercal, we get the equivalent result as zero variance. There-

fore, we decided to control only the variance and let was set at 2 and the corresponding locations were at
50.0 cM of chromosome 1 and 40.0 cM of chromosomethe QTL be fully informative. The locations and effects

of the three simulated QTL are given in Table 1. The 2, respectively. The prior Poisson mean of the number
of QTL was m 5 2 and the maximum number of QTLvalue of the liability of each individual took the sum of

the overall mean, values of QTL additive and dominance was L 5 6. The starting values for all regression parame-
ters were 0.0. The priors for the regression parameterseffects, and an environmental error sampled from a

standardized normal distribution. The observed binary were normal with mean 0.0 and variance 10.0. The prior
for the QTL locations was uniform over the whole ge-phenotype was set to be sj 5 1 if the corresponding

liability exceeds t 5 0, and sj 5 0 otherwise. We designed nome. The tuning parameter of the proposal distribu-
tion for QTL locations was chosen to be 2.0 cM. Finally,two simulation experiments. In design I, the overall

mean of the liability was set at 0.0, which generates a the proposal distributions for the allelic and dominance
effects were normal with means 0.0 and variance 1.0 intrait incidence of 50%. In design II, the mean was set

at 20.95, leading to a trait incidence of 20%. cases where the addition of a new QTL to the model
was proposed.For comparison, the liability of each individual was

also reported and analyzed as if it were observed. There- In each of the MCMC analyses, we ran a single long
chain with 106 cycles of simulations. The first 200 sam-fore, we analyzed two data sets produced from the same

group of sibs, the binary data and the normally distrib- ples (burn-in period) were discarded and the chain
was thinned (saved one iteration in every 50 cycles) touted data. When the normally distributed data were

analyzed, we used the same program by suppressing the reduce serial correlation in the stored samples so that
the total number of samples kept in the analysis wasliability-generating subroutine and replacing the liabili-

ties by the reported normal observations. In addition, 2 3 104.
we added a subroutine to generate the environmental
error because s2

ε must be estimated instead of taking a
RESULTS

value of unity. The residual variance at each cycle
was updated from its conditional posterior distribution Before we present the result of Bayesian mapping, we

first give the results of the ML analysis for the binaryp(s2
ε|Y, l, l, M, Z, u) in the MCMC algorithm. This

conditional posterior distribution is an inverse gamma data. Figure 1 shows the likelihood profiles along the
two chromosomes for both designs. For design I (Figureaccording to the standard linear model theory when

the prior for s2
ε is an inverse gamma distribution (e.g., 1, a and b), we observed one peak at position 26 cM in

chromosome 1, overlapping with the true location of theGelman et al. 1995; Sorensen et al. 1995; Satagopan
et al. 1996). For simplicity of programming, however, we first simulated QTL (at 25 cM). The estimated effects of

this QTL are âm
j 5 0.3744, âf

j 5 0.4024, and d̂j 5 0.3858,simply used the Metropolis-Hastings (M-H) algorithm to
generate s2

ε under a flat prior. very close to the true values. There is no evident peak
in the neighborhood of the second QTL, although theWe modified the maximum-likelihood (ML) method

of Xu and Atchley (1996) so that it can handle the test statistics are consistently high. This clearly demon-
strates the limitation of the single QTL ML analysis.data with such a full-sib family structure and compared

our Bayesian results with the ML analysis. The logistic The second chromosome shows a clear peak at 22 cM
for design I and the estimated effects of the identifiedfunction was replaced by the probit function. The ML



1396 N. Yi and S. Xu

Figure 1.—Likelihood-ratio profiles of ML mapping and empirical distributions of the estimated QTL position obtained by
1000 bootstrap samples from the simulated binary data in design I (a and b) and design II (c and d). The solid curves are the
likelihood-ratio profiles and the histograms are the bootstrap frequencies. The left y-axis corresponds to the likelihood-ratio
statistic and the right y-axis corresponds to the bootstrap frequency. The true locations of the simulated QTL are indicated with
an arrow (↑).

QTL are âm
j 5 0.1008, âf

j 5 0.1654, and d̂j 5 0.3893. estimated QTL locations. We used 1000 bootstrap sam-
ples to simulate the distributions of the locations (seeOne should not expect the estimated values to be identi-

cal to the true values because this only represents the Figure 1). The bootstrap means (the standard devia-
tions) are 27.46 (10.08) cM and 25.19 (13.88) cM forresult of one random sample with 300 individuals.

For design II (Figure 1, c and d), a major peak was design I, and 24.10 (13.57) cM and 32.2581 (27.71) cM
for design II, for the two chromosomes, respectively.observed at 24 cM in chromosome 1 and the correspond-

ing effects were estimated to be âm
j 5 0.3193, âf

j 5 In the MCMC analyses, we used the QTL intensity
function of Sillanpää and Arjas (1998, 1999) to detect0.1873, and d̂j 5 0.3230. However, the second QTL in

chromosome 1 remained undetected due to the low the number and locations of QTL. The interval length
was chosen to be 1 cM long. The approximate posteriorlikelihood-ratio value (12.6101). For chromosome 2,

there are two peaks at 25 and 35 cM with the estimated QTL intensities for both the binary and the normal data
in design I are shown in Figure 2. The fact that the twoeffects âm

j 5 0.2227, âf
j 5 0.2281, and d̂j 5 0.1643 and

âm
j 5 0.1832, âf

j 5 0.2517, and d̂j 5 0.1829. Obviously, approximate posterior QTL intensities both have three
peaks around the true locations of the three simulatedit is difficult to distinguish one QTL or two QTL in

chromosome 2 from the ML analysis. QTL supports a three-QTL model and the true model
is indeed of three QTL in design I. Comparing theThe ML analyses of QTL mapping do not provide

confidence intervals for the estimated QTL locations shapes of the QTL intensities for the binary and normal
data analyses, we can see that binary data analysis doesand effects. Confidence intervals would have to be deter-

mined by a resampling technique separately. We lose some information, but the information retained is
still sufficient to detect all the simulated QTL.adopted the bootstrap method of Visscher et al.

(1996b) to construct the confidence intervals for the Figure 3 depicts the approximate posterior QTL in-
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Figure 2.—Histograms of the pos-
terior QTL intensity for binary data
(top) and normally distributed data
(bottom) in design I, respectively.
Simulated true QTL locations are in-
dicated with an arrow (↑).

Figure 3.—Histograms of the pos-
terior QTL intensity for binary data
(top) and normally distributed data
(bottom) in design II, respectively.
Simulated true QTL locations are in-
dicated with an arrow (↑).
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TABLE 2

Empirical posterior distribution of QTL number and the posterior mean

Estimated distribution, for l 5
Data Estimated

Design type 0 1 2 3 4 5 6 mean

I Binary 0.0000 0.0142 0.1111 0.7622 0.1085 0.0040 0.0000 2.9771
Normal 0.0000 0.0000 0.0073 0.9826 0.0101 0.0000 0.0000 3.0028

II Binary 0.0000 0.1292 0.7713 0.0940 0.0056 0.0040 0.0000 1.9760
Normal 0.0000 0.2319 0.7533 0.0142 0.0007 0.0000 0.0000 1.7839

tensities for both the binary and the normal data in the QTL effects are reliable. As expected, the posterior
variances of the normal data are smaller than thosedesign II. For chromosome 1, the QTL intensity graphs

are concentrated around the first QTL locations for obtained for the binary data. For design I, the estimated
QTL locations are very close to the corresponding trueboth the binary and the normal data. The second, the

weakest QTL in chromosome 1, remained undetected values and the standard errors are relatively small com-
pared to design II, which has low heritabilities andfor both the binary and the normal data, and this result

was practically the same as that obtained from the ML skewed trait incidence.
analysis of the binary data in design II. For chromosome
2, the two approximate posterior QTL intensities both

DISCUSSION
have one peak and apparently support one QTL resid-
ing at this chromosome. However, the modes of the We have presented here a Bayesian QTL mapping

for complex binary traits. The methodology can be gen-intensities for the normal and binary data differ by z9
cM from the simulated true location in chromosome 2. eralized to multiple-ordered categorical traits (appen-

dix c). The most obvious advantage of the BayesianThe approximate posterior distributions for the num-
ber of QTL, obtained from the two designs, are pre- method over existing ML is the ability to investigate

the distributions of parameter estimates. Among thesented in Table 2. For design I, the posterior means are
essentially the same for the binary data and the normal parameters of interest, the number of QTL may be the

most important one. It is the Bayesian method thatdata and coincide with the simulated number of QTL.
As expected, the posterior variance of QTL number for provides an easy way to estimate this parameter. The

threshold model that the Bayesian mapping is basedthe normal data is smaller than that for the binary data.
Finally, the posterior mode of the QTL number overlaps on is not new to QTL mapping for categorical traits.

Bayesian mapping for normally distributed traits is alsowith the true number for both types of data in design
I. In the analysis of design II, the estimated posterior available. In this article we combine both techniques to

develop the Bayesian mapping for binary traits. Thedistributions for the number of QTL appear to have
shifted to the left by 1 compared with the simulated main point of the threshold model is that by introducing

an underlying normal variable into the problem, thenumber of QTL, for the two types of data. Again, as in
design I, the posterior means and modes are essentially binary response is connected to the normal linear model

via the probit function. The major advantage of the thresh-the same for both the binary data and the normal data.
Consider next the estimations of QTL effects. The old model as applied to Bayesian mapping is that once

the underlying liability is generated, all other unknownsestimates are reliable only in chromosome regions in
which the posterior QTL intensity or the posterior den- have conditional posterior distributions identical to

those already given in Bayesian analysis of normal data.sity of QTL locations is sufficiently high (Sillanpää
and Arjas 1998, 1999; Stephens and Fisch 1998). The Since the liability is a hypothetical variable, the inter-

pretation of categorical data with a threshold modelhighest posterior region attempts to capture a compara-
tively small region of the parameter space that contains can be delicate. However, there are a number of ways

to test the general validity of the model (Lynch andmost of the posterior probability mass. The chromo-
some regions with sufficiently high posterior QTL inten- Walsh 1998, Chapter 25). In the threshold model, the

liability is usually assumed normal. In reality, the naturesity are given in Table 3. We used only the posterior
samples, in which QTL locations fall into the regions of the underlying variable is always unknown. In Bayes-

ian analysis, some kind of distribution must be assigneddescribed in Table 3, to estimate the QTL effects. The
posterior distributions of the QTL effects are presented to this hypothetical variable and normal distribution is

the natural choice. In addition, Tan et al. (1999) re-graphically in Figure 4 for the three identified QTL for
design I. The point estimates and the estimation errors cently showed that the normal assumption for the liabil-

ity is robust to obvious departure from normality.of locations and effects of QTL for the two designs are
presented in Table 3. In most cases the estimations of The key focus of QTL mapping is on making infer-



1399Bayesian Mapping for Binary Traits

TABLE 3

The highest posterior QTL intensity interval, Bayesian estimates of QTL locations, and allelic and dominance effects

Sum of the QTL
Interval QTL location

Design Data type Chromosome (cM) intensity (cM) am
j af

j dj

I Binary 1 z20–30 0.7335 25.1873 0.4190 0.4498 0.5171
(1.8353) (0.1686) (0.1800) (0.1661)

1 z67–82 0.7922 75.1281 0.1898 0.2563 0.3545
(2.8636) (0.1509) (0.1432) (0.1347)

2 z19–30 0.8664 23.7155 0.1935 0.4041 0.4916
(1.9447) (0.2146) (0.3352) (0.3117)

Normal 1 z21–28 0.8322 24.5080 0.3707 0.3131 0.4318
(1.4152) (0.0730) (0.0737) (0.1053)

1 z70–80 0.9578 75.2191 0.1423 0.2708 0.3781
(1.7838) (0.0764) (0.0688) (0.0855)

2 z21–28 0.9369 24.4426 0.3778 0.3079 0.4109
(1.3540) (0.0869) (0.0766) (0.0956)

II Binary 1 z12–35 0.9311 22.1744 0.3422 0.2122 0.3334
(4.7910) (0.3251) (0.2578) (0.3946)

2 z22–38 0.7383 32.8831 0.3205 0.2342 0.1226
(2.9075) (0.3593) (0.2939) (0.2131)

Normal 1 z15–35 0.9822 28.0919 0.3362 0.2231 0.3184
(4.0857) (0.0798) (0.0777) (0.1475)

2 z25–39 0.6330 33.3772 0.1321 0.2426 0.2972
(2.4237) (0.0659) (0.0707) (0.1328)

Posterior standard errors of the estimates are given in parentheses.

ences about the number of QTL, their locations, and levels of randomness and the resultant ability to com-
bine information from different sources. Therefore, theeffects. There are a number of advantages in arriving

at inferential statements by using a Bayesian approach Bayesian approach could be extended to allow more
complicated models for more complicated data struc-over the traditional methods. First, Bayes’ method pro-

vides a complete posterior distribution for the number tures.
An essential element of our full Bayesian mappingof QTL, their locations, and the corresponding effects.

As a consequence, interval estimates of the parameters for binary traits is its ability to move between different
values of the QTL number. The proposed method per-can be obtained straightforwardly. In contrast, ML only

produces point estimates of these parameters. Confi- formed well for the simulated data. The mixing property
of the MCMC algorithm does not seem to be overlydence intervals would have to be determined separately,

for example, by employing bootstrap (Visscher et al. sensitive to the choice of the initial values of the un-
knowns. For example, when we started with l0 5 6, after1996b) or other sampling-based methods. Second, it is

usually difficult to determine the correct number of 100 iterations l quickly dropped to 3 and subsequently
behaved the same as when we started with l0 5 2. AQTL using traditional methods. It has been shown that

an incorrect specification for the number of QTL can similar conclusion has been obtained by Heath (1997).
However, the mixing property seems to be greatly af-lead to distortion of estimates of locations and effects

when ML and least squares (LS) are used. Bayesian fected by the proposal distribution for QTL effects when
a new QTL is added to the model. Therefore, this pro-mapping allows one to include the number of QTL as an

unknown in the analysis and thus avoids this distortion. posal distribution should be chosen with care (Heath
1997; Stephens and Fisch 1998; Sillanpää and ArjasThird, a common problem with traditional methods

is how to choose the appropriate critical value of the 1999). To ensure sufficient mixing, the single MCMC
chain must be sufficiently long. Although the methodstatistical test for declaration of the presence of QTL.

With the reversible jump MCMC, the number and the is computationally very intensive, it does not need re-
peated analyses of resampled data, as required in MLlocations of QTL can be characterized by the posterior

probability distribution of the number of QTL and the for the permutation test. On a Sun SPARC 5 workstation,
our analyses with a MCMC chain of 106 took z6.5 hrposterior QTL intensity. One can even calculate the

posterior probability that some particular chromosomal for normal data and 8 hr for binary data, respectively.
A major implementation issue in MCMC is to determineregion contains at least one QTL (Sillanpää and Arjas

1998, 1999). Finally, the Bayes method has the inherent the effective sample sizes. This issue is related to the
assessment of convergence of the MCMC sampler, theflexibility introduced by its incorporation of multiple
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Figure 4.—Approximate posterior distributions of maternal allelic effects (af
j), paternal allelic effects (af

j), and dominance
effects (dj) for j 5 1, 2, 3, for design I. Simulated true values of QTL effects are indicated with an arrow (↑). The solid curves
represent QTL mapping for binary data: (a) the first QTL determined from interval z20–30 cM of chromosome 1; (b) the
second QTL determined from interval z67–82 cM of chromosome 1; (c) the QTL on chromosome 2 determined from interval
z19–30 cM. The dotted curves represent QTL mapping for normal data: (a) the first QTL determined from interval z21–28
cM of chromosome 1; (b) the second QTL determined from interval z70–80 cM of chromosome 1; (c) the QTL on chromosome
2 determined from interval z21–28 cM.

serial correlation between the samples, and the burn- the offspring. If grandparents are also genotyped, the
linkage phases can be accurately reconstructed; other-in period. When analyzing real data, one can examine

time series graphs of simulated sequence and calculate wise, a relatively large number of offspring for each
family are required (Knott et al. 1996). Alternatively,the Monte Carlo variance to obtain estimates of the

effective sample sizes of all parameters (Geyer 1992). one can treat linkage phases as random variables in
the Bayesian analysis, as done by Sillanpää and ArjasIn our simulation studies, it is difficult to calculate series

correlation because the dimension keeps changing from (1999). When the family size is too small, inference of
the parental linkage phases will be subject to large errorone cycle to another. When the dimension changes,

the identities of the QTL also change. Therefore, we and stochastic resampling is certainly required. When
the mapping population contains many small families,empirically determined the burn-in period, the length

of the MCMC chain, and the interval length of subsam- accurate inferences of parental linkage phases are al-
most impossible and other statistical models may bepling to reduce the serial correlation.

The Bayesian procedure presented in this study is considered, such as the IBD-based random model ap-
proach (Xu and Atchley 1995). Under the randombased on known marker linkage phases in the parents.

When the linkage phases are not known, they must be model approach, one does not need to know the num-
ber of alleles and the parental linkage phases.inferred first from marker genotypes of the parents and
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APPENDIX A: CONDITIONAL prior means for bk, am
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POSTERIOR DISTRIBUTIONS s2
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are the prior variances for bk,

am
j *, af

j *, and dj *.Conditional posterior distribution of the liability yi:
Conditional posterior distributions of the QTL andConditional on u, Zi, and si, the liability yi follows a

marker genotypes: The conditional posterior distribu-truncated normal distribution. Depending on the bi-
tion of the QTL genotype Zij is a discrete distributionnary phenotypic value si, we have
over the possible genotypes. In model (1), the QTL
genotype Zij takes one of four values. Thus, for instance,p(yi|u, Zi, si 5 1) 5
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where Zi(2j) 5 {Zij 9 : 1 # j 9 # l, j 9 ? j }, and Zl
ij (Zr

ij) iswhere w(x, s2) is the normal density with mean zero
and variance s2 and F(·) is the standardized normal the left (right) flanking genotype of the jth QTL of the

ith individual (markers or QTL).distribution function.
Conditional posterior distributions of the regression The conditional posterior distribution of the marker
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APPENDIX C: GENERALIZATION TO MULTIPLE-genotype Mij is dependent only on the genotypes of
ORDERED CATEGORICAL TRAITSrelevant flanking loci (marker or QTL). Taking the

prior of the marker into consideration, we can obtain The method described in the text can be generalized
to multiple-ordered categorical traits. Suppose now that

p(Mij 5 mij|Ml
ij, Mr

ij) 5
p(Mij 5 mij)p(Ml

ij, Mr
ij|Mij 5 mij)

p(Ml
ij, Mr

ij)
, the observed phenotypic value si takes one of c ordered

categories, 1, · · · , c. A set of fixed thresholds, t1 , t2 ,(A7)
· · · , tc21, in the scale of the liability determine the
observed categories. Let t0 5 2∞ and tc 5 1∞. Wewhere Ml

ij (Mr
ij) is the left (right) flanking complete

observe si, where si 5 k if tk21 , yi # tk (k 5 1, · · ·, c).genotype of the jth marker of the ith individual, and
The thresholds t1, · · ·, tc21 are unknown and need top(Mij 5 mij) is the prior probability of the jth marker
be estimated. To ensure that the parameters are identi-of the ith individual. p(Mij 5 mij) is calculated by the
fiable, it is necessary to impose one restriction on themultipoint method (Rao and Xu 1998).
thresholds. Without loss of generality, we take t1 5 0
(Albert and Chib 1993) and estimate t 5 (t2, · · · ,
tc21). Assuming that t and (l, l, u) are independentlyAPPENDIX B: ACCEPTANCE PROBABILITIES
distributed a priori, the joint posterior distribution can

Updating QTL locations: To modify the location lj be written as
of the jth QTL, a proposal lj

new is generated from a
uniform distribution on the interval [lj 2 d, lj 1 d], p(Y, l, l, M, Z, u, t |S) ~ p(S|Y, l, l, Z, u, t)p(Y|l, l, Z, u)
where d is a tuning parameter. The acceptance probabil-

3 p(Z|l, l, M)p(M)p(l, l, u)p(t), (C1)ity for the change from lj to lj
new takes min{1, a}, where

the relative importance ratio a is defined as where p(Y|l, l, Z, u), p(Z|l, l, M), p(M), and p(l, l, u)
are the same as for the binary data model. The first
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genotype of the left (right) flanking locus (marker or
(C2)QTL) at the current position for the jth QTL in the ith

individual, and Zl*
ij (Zr*

ij ) is the genotype of the left (right)
The last term in (C1), p(t), is the prior density of t andflanking locus at the proposed new location for the jth
is discussed below.QTL in the ith individual.

It is clear that the conditional posterior distributionsAdd one new QTL: Given the liability Y, the accep-
of u, M, and Z are the same as those specified in thetance probability is the same as that of the normal trait,
binary model. For the liability associated with the kthexcept that the normal observables are replaced by the
observation, we havesimulated values of liability. As in Sillanpää and Arjas

(1998), the acceptance probability is min{1, a}, where p(yi|u, Zi, si 5 k)
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where w(x, s2) stands for the normal density with mean
where Z*i is the proposed genotype of the ith individual, 0 and variance s2, and F(·) is the standardized normal
g* are the proposed QTL effects, and m is the prior distribution function. If we assign a diffuse prior for t,
mean of the QTL number. the conditional posterior distribution of tk given {tj, j ?

Delete one QTL: If the jth existing QTL is proposed k} and all the other parameters is uniform on the interval
to be removed from the model, the acceptance probabil- [max{max{yi : si 5 k}, tk21}, min{min{yi : si 5 k 1 1}, tk11}]ity is min{1, a}, where (Albert and Chib 1993; Sorensen et al. 1995).

The MCMC algorithm for the binary case described
a 5
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ij9Hgj9)2}
exp{21⁄2on
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. in the text is now generalized to multiple-ordered cate-
gorical traits. In brief, we only need to modify the likeli-(B3)
hood and generated t. Eventually, the liability is gener-
ated according to a doubly truncated normal ratherIn (B2) and (B3), the first term is the likelihood ratio,
than a singly truncated one. Updating of other parame-the second term is the prior ratio, and the third term

is the proposal ratio; Jacobian is 1. ters remains the same as in binary data analysis.


